Strict Standards: Non-static method ExprParser::addMessages() should not be called statically, assuming \$this from incompatible context in /home/world/public_html/learn/extensions/ParserFunctions/ParserFunctions.php on line 32
Metre

# Metre

(Redirected from Metres)
1 metre =
International units
m 1×10−3 km
1000 mm 10×109 Å
6.685×10−12 AU 105.7×10−18 LY
US customary / Imperial units
39.37 in 3.281 ft
1.094 yd 621.371×10−6 mi

The metre, or meter (U.S.), is a measure of length. It is the basic unit of length in the metric system and in the International System of Units (SI), used around the world for general and scientific purposes. Historically, the metre was defined by the French Academy of Sciences as 1/10,000,000 of the distance from the equator to the north pole through Paris. Now, it is defined by the International Bureau of Weights and Measures as the distance travelled by light in absolute vacuum in 1/299,792,458 of a second. This is approximately the distance from floor to hip bone on the average barefoot man.

The symbol for metre is m. Decimal multiples and submultiples of the metre, such as kilometre (1000 metres) and centimetre (1/100 metre), are indicated by adding SI prefixes to metre (see table below).

##  History

The word metre is from the Greek metron (μέτρον), "a measure" via the French mètre. Its first recorded usage in English meaning this unit of length is from 1797.

In the eighteenth century, there were two favoured approaches to the definition of the standard unit of length. One suggested defining the metre as the length of a pendulum with a half-period of one second. The other suggested defining the metre as one ten-millionth of the length of the Earth's meridian along a quadrant, that is the distance from the equator to the north pole. In 1791, the French Academy of Sciences selected the meridional definition over the pendular definition because the force of gravity varies slightly over the surface of the Earth, which affects the period of a pendulum. In order to establish a universally accepted foundation for the definition of the metre, measurements of this meridian more accurate than those available at that time were imperative. The Bureau des Longitudes commissioned an expedition led by Delambre and Pierre Méchain, lasting from 1792 to 1799, which measured the length of the meridian between Dunkerque and Barcelona. This portion of the meridian, which also passes through Paris, was to serve as the basis for the length of the quarter meridian, connecting the North Pole with the Equator. However, in 1793, France adopted the metre based on provisional results from the expedition as its official unit of length. Although it was later determined that the first prototype metre bar was short by a fifth of a millimetre due to miscalculation of the flattening of the Earth, this length became the standard. So, the circumference of the Earth through the poles is approximately forty million metres.

Image:Platinum-Iridium meter bar.jpg
Historical International Prototype Metre bar, made of an alloy of platinum and iridium, that was the standard from 1889 to 1960.

In the 1870s and in light of modern precision, a series of international conferences were held to devise new metric standards. The Metre Convention (Convention du Mètre) of 1875 mandated the establishment of a permanent International Bureau of Weights and Measures (BIPM: Bureau International des Poids et Mesures) to be located in Sèvres, France. This new organisation would preserve the new prototype metre and kilogram when constructed, distribute national metric prototypes, and would maintain comparisons between them and non-metric measurement standards. This organisation created a new prototype bar in 1889 at the first General Conference on Weights and Measures (CGPM: Conférence Générale des Poids et Mesures), establishing the International Prototype Metre as the distance between two lines on a standard bar of an alloy of ninety percent platinum and ten percent iridium, measured at the melting point of ice.

In 1893, the standard metre was first measured with an interferometer by Albert A. Michelson, the inventor of the device and an advocate of using some particular wavelength of light as a standard of distance. By 1925, interferometry was in regular use at the BIPM. However, the International Prototype Metre remained the standard until 1960, when the eleventh CGPM defined the metre in the new SI system as equal to 1,650,763.73 wavelengths of the orange-red emission line in the electromagnetic spectrum of the krypton-86 atom in a vacuum. The original international prototype of the metre is still kept at the BIPM under the conditions specified in 1889.

To further reduce uncertainty, the seventeenth CGPM in 1983 replaced the definition of the metre with its current definition, thus fixing the length of the metre in terms of time and the speed of light:

The metre is the length of the path travelled by light in vacuum during a time interval of 1/299 792 458 of a second.<ref>Resolution 1 of the seventeenth CGPM (1983): Definition of the metre</ref>

Note that this definition had the effect of fixing the speed of light in a vacuum at precisely 299,792,458 metres per second. Although the metre is now defined in terms of time-of-flight, actual laboratory realisations of the metre are still delineated by counting the required number of wavelengths of light along the distance. An intended byproduct of the 17th CGPM’s definition was that it enabled scientists to measure their lasers’ wavelengths with one-fifth the uncertainty. To further facilitate reproducibility from lab to lab, the 17th CGPM also made the iodine-stabilised Helium-Neon laser “a recommended radiation” for realising the metre.<ref>Reference: Time Line for the Definition of the Meter by the NIST.</ref> Today’s best determination of the wavelength of this laser is λHeNe = 632.991 398 22 nm with an estimated relative standard uncertainty (U) of ±  2.5 × 10-11. This uncertainty is currently the limiting factor in laboratory realisations of the metre as it is several orders of magnitude poorer than that of the second (U = 1 × 10-14). Consequently, a practical realisation of the metre is usually delineated (not defined) today in labs as 1,579,800.298 728 ± 0.000 039 wavelengths of Helium-Neon laser light in a vacuum.

### Timeline of definition

• 1791March 30 — The French National Assembly accepts the proposal by the French Academy of Sciences that the new definition for the metre be equal to one ten-millionth of the length of the Earth's meridian along a quadrant through Paris, that is the distance from the equator to the north pole.
• 1795 — Provisional metre bar constructed of brass.
• 1927October 6 — The seventh CGPM adjusts the definition of the length to be the distance, at 0 °C, between the axes of the two central lines marked on the prototype bar of platinum-iridium, this bar being subject to one standard atmosphere of pressure and supported on two cylinders of at least one centimetre diameter, symmetrically placed in the same horizontal plane at a distance of 571 millimetres from each other.
• 1983October 21 — The seventeenth CGPM defines the length as equal to the distance travelled by light in vacuum during a time interval of 1/299 792 458 of a second.

## SI prefixed forms of metre

SI prefixes are often employed to denote decimal multiples and submultiples of the metre. The most commonly used factors of metre are listed below in bold.<ref>The term “most commonly used” is based on those with more than 5 million Google hits on the American spelling.</ref>

 Submultiples Multiples Factor Name Symbol Factor Name Symbol 10−1 decimetre dm 101 decametre dam 10−2 centimetre cm 102 hectometre hm 10−3 millimetre mm 103 kilometre km 10−6 micrometre µm 106 megametre Mm 10−9 nanometre nm 109 gigametre Gm 10−12 picometre pm 1012 terametre Tm 10−15 femtometre (fermi) fm 1015 petametre Pm 10−18 attometre am 1018 exametre Em 10−21 zeptometre zm 1021 zettametre Zm 10−24 yoctometre ym 1024 yottametre Ym

## Equivalents in other units

SI value Other unit
1 metre 10000/254 ≈ 39.37 inches
2.54 centimetres 1 inch
1 nanometre 10 ångströms

<references />